Around the world, researchers are working extremely hard to develop new treatments and interventions for COVID-19 with new clinical trials opening nearly every day. This directory provides you with information, including enrollment detail, about these trials. In some cases, researchers are able to offer expanded access (sometimes called compassionate use) to an investigational drug when a patient cannot participate in a clinical trial.
The information provided here is drawn from ClinicalTrials.gov. If you do not find a satisfactory expanded access program here, please search in our COVID Company Directory. Some companies consider expanded access requests for single patients, even if they do not show an active expanded access listing in this database. Please contact the company directly to explore the possibility of expanded access.
Emergency INDs
To learn how to apply for expanded access, please visit our Guides designed to walk healthcare providers, patients and/or caregivers through the process of applying for expanded access. Please note that given the situation with COVID-19 and the need to move as fast as possible, many physicians are requesting expanded access for emergency use. In these cases, FDA will authorize treatment by telephone and treatment can start immediately. For more details, consult FDA guidance. Emergency IND is the common route that patients are receiving convalescent plasma.
Search Tips
To search this directory, simply type a drug name, condition, company name, location, or other term of your choice into the search bar and click SEARCH. For broadest results, type the terms without quotation marks; to narrow your search to an exact match, put your terms in quotation marks (e.g., “acute respiratory distress syndrome” or “ARDS”). You may opt to further streamline your search by using the Status of the study and Intervention Type options. Simply click one or more of those boxes to refine your search.
Displaying 230 of 1206Foshan University Laboratory of Emerging Infectious Disease Institute of Translational Medicine The First Hospital of Jilin University China
Recombinant Bacterial ACE2 receptors -like enzyme of B38-CAP could be promising treatment for COVID-19 infection- and Its inflammatory complications better than recombinant human ACE2 Mahmoud ELkazzaz(1),Tamer Haydara(2),Yousry Abo-amer(3), Quan Liu(4) 1. Department of chemistry and biochemistry, Faculty of Science, Damietta University, Egypt. 2. Department of Internal Medicine, Faculty of Medicine, Kafrelsheikh University, Egypt 3. Hepatology,Gastroenterology and Infectious Diseases Department, Mahala Hepatology Teaching Hospital, Egypt 4. School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province; Laboratory of Emerging Infectious Disease, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China. Abstract The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 100 million people causing over 2.4 million deaths over the world, and it is still expanding. There is an urgent need for targeted and effective COVID-19 treatments which has put great pressure on researchers across the world for developing effective drugs. This paper reviews the possibility of using Recombinant Bacterial ACE2 Receptors -Like Enzyme of B38-CAP to treat SARS-CoV-2 based on the intracellular mechanism of SARS-CoV-2 transmission and consequences caused. Angiotensin-converting enzyme 2 (ACE2) plays a key role in cardiovascular physiology and pathology, and it's being currently being investigated as a potential covid-19 and acute lung failure treatment through several clinical trials.. The SARS-CoV2 binding site was identified as ACE2, a part of the RAAS, which is known to protect the lung from injuries. it has been postulated that SARS-CoV-2 binding to ACE2 may attenuate residual ACE2 activity, skewing the ACE/ACE2 balance to a state of heightened angiotensin II activity leading to inflammatory and oxidative organ damage, as well as pulmonary vasoconstriction, which can lead to acute lung injury.. Therefore, treatment with recombinant soluble ACE2 protein and drugs that up regulate ACE2 may alleviate pulmonary complication. In animal models including heart failure, acute lung injury, and diabetic nephropathy, recombinant human ACE2 protein (rhACE2), which is devoid of its membrane-anchored domain thus soluble, has been shown to have beneficial effects. Despite its positive effects, rhACE2 is a glycosylated protein, which necessitates a time- and cost-intensive protein expression system using mammalian or insect cells, which may be inconvenient in drug production and medical economics. Moreover, we hypothesis that treating COVID-19 patients with recombinant soluble ACE2 protein may induce autoantibodies and T cells to cellular ACE2.Furthermore, rhACE2 may interact with spike protein based vaccine and worsen its effect . These autoantibodies may generated by enforced presentation of the soluble Angiotensin-converting enzyme 2 (ACE2) protein in a complex with COVID-19 Spike protein in fragment crystallizable (FC) Receptor positive Antigen Presenting Cells in the blood The development of autoantibodies might make injury and damage to the host epithelial cells and hamper their ACE2 dependent function in lungs, intestine and testes which express ACE2. In addition to inducing platelet aggregation and thrombosis . Although it has been stated that immune response associated with the chronic infusion of rhACE2 resulting in the degradation of rhACE226, this was not the case with B38-CAP; no antibodies against B38-CAP were detected in the serum of mice infused with B38-CAP for two weeks... In this case we suggest that bacterial engineering could be used to develop better protein drugs for COVID-19 treatment... B38-CAP is an ACE2-like enzyme derived from bacteria that reduces hypertension and cardiac dysfunction. Angiotensin-converting enzyme 2 (ACE2) plays a key role in cardiovascular physiology and pathology, and it is currently being studied in clinical trials to treat acute lung failure. In mice, B38-CAP treatment prevented angiotensin II-induced hypertension, cardiac hypertrophy, and fibrosis. B38-CAP is an ACE2-like enzyme derived from bacteria, demonstrating that evolution has shaped a bacterial carboxypeptidase (B38-CAP) to a human ACE2-like enzyme. As a result, we think that treating COVID-19-infected patients with Bacterial ACE2 like enzymes, rather than human ACE2, may be preferable because it will perform the same role as human ACE2 and may not be recognized by COVID-19 spike protein Keywords: COVID 2019 ,Infection, B38-CAP , Bacterial ACE2 receptors -like enzyme , rhACE226.
Versailles Hospital
Background. Angiotensing converting enzyme type 2 (ACE2), a key enzyme of the renin-angiotensin-aldosterone system (RAAS), is the receptor of SARS-CoV-2 for cell entry into lungs. Because ACE2 may be modulated by RAAS inhibitors, such as angiotensin converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARBs), there is concern that patients treated with ACEi and ARBs may be at higher risk for COVID-19 infection and severity. Aim. To analyze the associations between COVID-19 and hypertension, and treatments with ACEi and ARBs. Methods. In this retrospective observational study, consecutive patients hospitalized for suspected COVID-19 pneumonia will be divided into 2 groups, whether or not COVID-19 is confirmed. The two groups will be compared for baseline characteristics, mainly prior treatment with ACEi and ARBs, and clinical outcome at 1-month follow-up. The main hypothesis is that ACEi and ARBs, which interact differently with ACE2, may have different relationships with COVID-19 infection or severity.
University Hospital, Toulouse
To date, the effects of SARS-Cov-2 (Covid-19) on the myocardium and the role it plays in the evolution towards an acute myocarditis are badly understood. The current pandemic of this emerging virus is an opportunity to assess the proportion of acute myocarditis attributable to SARS-Cov-2(Covid-19) and to assess the clinical, biological and imaging presentations, by means of a national prospective multicentre hospital registry of cases of acute myocarditis.
Mansoura University
To report the possible role of S.B 8.4% in the treatment of COVID-19pneumonia.
Fundación Teófilo Hernando, Spain
7. Objectives To apply e-health methods to perform active monitoring and assess determinants of incident Infection of COVID-19 in a hospital population. 8. Study design Prospective, Single-centre, observational clinical study. 9. Disease or disorder under study Healthy people in risk of COVID-19 infection. 10. Main variable. Symptoms related to infection caused by SARS-Cov2. 11. Study population and total number of patients Men and women in general god health status aged between 18 and 80 years that currently are employees of Hospital de La Princesa . 12. Duration of treatment Each subject will be monitored, since its recruitment, for a period of 12 weeks. 13. Timetable and expected date of completion The overall duration of the study is estimated at about 6 months, from patient recruitment to the last data recorded by last subject. The aim is to carry out this study from March 2020 onwards.
Istinye University
Healthcare professionals mainly doctors, nurses and their first degree relatives (spouse, father, mother, sister, brother, child) who have been started hydroxychloroquine(plaquenil) 200mg single dose repeated every three weeks plus vitaminC including zinc once a day were included in the study. Study has conducted on 20th of march. Main purpose of the study was to cover participants those who are facing or treating COVID19 infected patients in Ankara.
CCTU- Cancer Theme
COVID-19 (also known as Coronavirus) originated in the Wuhan China and has since spread to at least 159 countries around the world. It was declared a pandemic by the World health organisation on the 11th of March 2020. The cases in the United Kingdom continue to increase exponentially with up to 5 683 people diagnosed as on the 22nd of March 2020. It is estimated that 1 in 5 people diagnosed will require hospital admission and 1 in 20 intensive care treatment. By developing and improving diagnostic testing, we can accurately diagnose infected cases to triage appropriate treatments, identify individuals for quarantine in order to prevent transmission and obtain information regarding patient's immune systems. At present, the diagnostic test is a highly specific method of genetic amplification called 'Reverse Transcription - Polymerase Chain Reaction' or RT-PCR, which allows detection of very small amounts of genetic mutations caused by the COVID-19 virus. However, this method must be completed in highly specialised facilities, which are few and far between, increasing time to diagnosis (currently 48-72 hours), increasing exposure to non-infected individuals, and overburdening the analysing facilities. The ideal solution is a point of care (POC) test that can give results immediately. This study aims to harness the point of care technology of the SAMBA II device (Diagnostics for the Real World Ltd.), which is a CE-marked device that has been used with success in the identification of Human Immunodeficiency Virus (HIV), by amplifying genetic material without the need to increase and decrease temperatures during the amplification process. In the COVIDx study, 200 patients meeting the Public Health England's (PHE) inpatient definition of having suspected COVID-19 will be approached, consented and a sample from throat and nasal swab (combined) or tracheal fluid taken and tested using the SAMBA II method. A combination of the standard PHE RT-PCR and an additional validated laboratory PCR technique will be used as a control in line with standard clinical practice. Patients will undergo an additional serum tests on existing samples as made available after routine clinical assessments to monitor antibody response. Patients will be followed for clinical outcomes at 28 days post-admission.
University Hospital, Lille
Coronavirus 2019 (COVID-19) is a respiratory tropism virus transmitted through droplets emitted into the environment of infected persons. The symptoms can be extremely varied and the course can range from spontaneous healing without sequelae to death. Currently, the diagnosis of certainty for resuscitation patients (by definition "severe") is based on searching for a fragment of virus genetic material within the epithelial cells of the respiratory tree, up and/or down, by PCR. It is to be expected that the epidemic peak will make it difficult (if not impossible) to respect the stereotypical path that is currently in place, due to the lack of space in the specific unit. This will require optimization of care pathways and use of the specific sectors. It is therefore necessary to define the simple criteria, available from the moment patients are admitted, to predict the result of the COVID-19 PCR.
Professor Adrian Covic
Management of known patients with cardiovascular disease (in particular the whole spectrum of atherosclerotic ischaemic coronary artery disease, essential hypertension under treatment, and also patients with chronic heart failure under medication) and with other associated chronic pathologies, with obvious effects on the management of the pandemic with modern / distance means (e-Health) of patients at high risk of mortality in contact with coronavirus. Given the Covid-19 Pandemic, all the above complex cardiovascular patients are under the obligation to stay in the house isolated and can no longer come to standard clinical and paraclinical monitoring and control visits. Therefore, a remote management solution (tele-medicine) of these patients must be found. The Investigators endeavour is to create an electronic platform to communicate with these patients and offer solutions for their cardiovascular health issues (including psychological and religious problems due to isolation). The Investigators intend to create this platform for communicating with a patient and stratify their complaints in risk levels. A given specialist will sort and classify their needs on a scale, based on specific algorithms (derived from the clinical European Cardiovascular Guidelines), and generate specific protocols varying from 911 like emergencies to cardiological advices or psychological sessions. These could include medication changing of doses, dietary advices or exercise restrictions. Moreover, in those patients suspected of COVID infection, special assistance should be provided per protocol.
Universidad Complutense de Madrid
A randomized controlled clinical trial will be carried out using inspiratory and expiratory training devices on healthy subjects recruited in social networks and university environments. The aim will be to determine the effectiveness and safety in the prevention and severity of COVID-19 disease by a respiratory training with inspiratory and expiratory devices.