Around the world, researchers are working extremely hard to develop new treatments and interventions for COVID-19 with new clinical trials opening nearly every day. This directory provides you with information, including enrollment detail, about these trials. In some cases, researchers are able to offer expanded access (sometimes called compassionate use) to an investigational drug when a patient cannot participate in a clinical trial.
The information provided here is drawn from ClinicalTrials.gov. If you do not find a satisfactory expanded access program here, please search in our COVID Company Directory. Some companies consider expanded access requests for single patients, even if they do not show an active expanded access listing in this database. Please contact the company directly to explore the possibility of expanded access.
Emergency INDs
To learn how to apply for expanded access, please visit our Guides designed to walk healthcare providers, patients and/or caregivers through the process of applying for expanded access. Please note that given the situation with COVID-19 and the need to move as fast as possible, many physicians are requesting expanded access for emergency use. In these cases, FDA will authorize treatment by telephone and treatment can start immediately. For more details, consult FDA guidance. Emergency IND is the common route that patients are receiving convalescent plasma.
Search Tips
To search this directory, simply type a drug name, condition, company name, location, or other term of your choice into the search bar and click SEARCH. For broadest results, type the terms without quotation marks; to narrow your search to an exact match, put your terms in quotation marks (e.g., “acute respiratory distress syndrome” or “ARDS”). You may opt to further streamline your search by using the Status of the study and Intervention Type options. Simply click one or more of those boxes to refine your search.
Displaying 1150 of 4490Raphael Serreau
The "COVIDOR" epidemiological study. Our study would be the first at the community level in Orleans Métropole, aiming to determine the link between a positive IgM level on the serological test and a healthy carrier of covid-19 in agents in contact with the public. It would provide epidemiological surveillance of anti-covid-19 immunity in the community
Azienda Sanitaria-Universitaria Integrata di Udine
Aim. The emerging outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide. Beside the prescription of some promising drugs as chloroquine, azithromycin, antivirals (lopinavir/ritonavir, darunavir/cobicistat) and immunomodulating agents (steroids, tocilizumab), in our patients with mild to moderate pneumonia due to SARS-CoV-2 we planned a randomize study to evaluate, respect the best available therapy (BAT), the use of autohemotherapy treatement with an oxygen/ozone (O3) gaseous mixture as adjuvant therapy. Design. Multicentric, randomized study. Participants. Clinical presentations are based upon clinical phenotypes identified by the Italian Society of Emergency and Urgency Medicine (SIMEU - Società Italiana di Medicina di Emergenza-Urgenza) and patients that meet criteria of phenotypes 2 to 4 were treat with best available therapy (BAT), and randomized to receive or not O3-autohemotherapy. Main outcome measures. The end-point were the time of respiratory improvement and earlier weaning from oxygen support: these parameters were included in the SIMEU clinical phenotypes classification.
Catholic University of the Sacred Heart
Molecular testing (e.g PCR) of respiratory tract samples is the recommended method for the identification and laboratory confirmation of COVID-19 cases. Recent evidence reported that the diagnostic accuracy of many of the available RT-PCR tests for detecting SARS-CoV2 may be lower than optimal. Of course, the economical and clinical implications of diagnostic errors are of foremost significance and in case of infectious outbreaks, namely pandemics, the repercussions are amplified. False positives and false-negative results may jeopardize the health of a single patient and may affect the efficacy of containment of the outbreak and of public health policies. In particular, false-negative results contribute to the ongoing of the infection causing further spread of the virus within the community, masking also other potentially infected people.
Roche Pharma AG
The investigators will follow a single prospective cohort of 50 Health Care Workers in the Hospital Italiano de Buenos Aires (Argentina) from May 15th to August 31st 2020 using antibody testing for SARS-CoV-2 IgM and IgG at baseline and every 2 weeks in order to assess the incidence of COVID-19, the prevalence of anti-SARS-CoV-2 antibodies (IgM and IgG) and incidence of reinfection or reactivations of previous COVID-19 using viral gene sequencing in this cohort.
Eiger BioPharmaceuticals
The main purpose of this research study is to test the safety and effectiveness of an investigational drug peginterferon lambda-1a in treating COVID-19.
The Marcus Foundation
This is a 50 patient, Phase 1/2a multi-center pilot study to test the safety and to describe the preliminary efficacy of intravenous administration of allogenic human cord tissue mesenchymal stromal cells (hCT-MSC) as an investigational agent, under U.S. INDs 19968 (Duke) and 19937 (U Miami) to patients with acute respiratory distress syndrome (ARDS) due to COVID-19 infection (COVID-ARDS). The first 10 consecutive patients will receive investigational MSCs manufactured by Duke. In the second phase of the study, 40 additional patients will be randomized to receive placebo or investigational MSCs manufactured by Duke or University of Miami. Patients will be eligible for infusion of 3 daily consecutive doses of hCT-MSC or placebo if they have a confirmed diagnosis of COVID-19 and meet clinical and radiographic criteria for ARDS. Results from the first 10 patients will be compared with concurrent outcomes utilizing standard of care treatments in participating hospitals and in published reports in the medical literature. Results from the additional 40 patients will be combined with the first 10 and analyzed. The trial is relying on focused eligibility of the participants (patients with ARDS), single cohort with short trial time (4 weeks), and simple assessment of clinical outcome (survival, improvement of ARDS). This is a sequential design in the sense that after the first 10 patients are evaluated a decision will be made by the PIs and the Data Safety Monitoring Board whether to proceed with the exploratory randomized portion of the study.
IRCCS Policlinico S. Matteo
The objective of the study is to assess the efficacy and safety of Baricitinib in the treatment of patients with COVID-19 pneumonia. This will be a proof-of-concept trial with an exploratory single-arm proof of concept Phase IIa study to assess the efficacy and safety profile of Baricitinib in a limited number of patients with severe acute respiratory syndrome (SARS)-CoV-2 pneumonia. If the initial proof of concept phase will lead to favourable results, an open-label, Phase II, randomized controlled trial will be then designed and performed to confirm the results obtained in the proof of concept phase. The proof-of-concept phase guarantees that no safety issues arise on a limited number of patients in the use of a drug new to the current condition being treated.
Tufts Medical Center
This study will evaluate the antihelmintic drug, Niclosamide, as a potential treatment for mild to moderate coronavirus disease 2019 (COVID-19).
Future Genetics Limited
The COVID-19 virus pandemic has massively affected us all. Moreover, there is a disproportionately high number of COVID-19 severe infections and deaths in British Black, Asian and minority ethnic (BAME) patients. This clinical study plans to discover new ways of protecting people from this virus by looking at our DNA and biology.
Imperial College London
In the United Kingdom, there are currently 138,000 confirmed patients with coronavirus, causing 18,738 deaths. Whilst the disease may be mild in the majority of patients, a significant proportion of patients require intensive care therapy and a ventilator due to lung injury. In addition to lung injury/failure (acute respiratory distress syndrome (ARDS)), around 50% of patients admitted to intensive care develop acute kidney injury (AKI) (requiring advanced support via haemofiltration) and multi-organ failure. It is unclear why patients suffering from COVID-19 develop such severe lung injury (requiring life support or ventilation) or indeed why patients develop other organ dysfunction such as kidney injury. The investigators hypothesis that this may due to an over-reaction of the immune system particularly in the lungs. This then results in the release of various mediators and biological messengers which can be pushed into the blood bloodstream (exacerbated by positive pressure generated by the ventilator). These mediators then travel, via the blood, to other organs such as the kidney where they cause inflammation and injury of cells, resulting in organ failure. The investigators would like to apply their well-established laboratory methods to further the scientific community's knowledge of this severe and deadly viral condition and we hope that this would lead to the development of medication that would treat this deadly virus.