Around the world, researchers are working extremely hard to develop new treatments and interventions for COVID-19 with new clinical trials opening nearly every day. This directory provides you with information, including enrollment detail, about these trials. In some cases, researchers are able to offer expanded access (sometimes called compassionate use) to an investigational drug when a patient cannot participate in a clinical trial.
The information provided here is drawn from ClinicalTrials.gov. If you do not find a satisfactory expanded access program here, please search in our COVID Company Directory. Some companies consider expanded access requests for single patients, even if they do not show an active expanded access listing in this database. Please contact the company directly to explore the possibility of expanded access.
Emergency INDs
To learn how to apply for expanded access, please visit our Guides designed to walk healthcare providers, patients and/or caregivers through the process of applying for expanded access. Please note that given the situation with COVID-19 and the need to move as fast as possible, many physicians are requesting expanded access for emergency use. In these cases, FDA will authorize treatment by telephone and treatment can start immediately. For more details, consult FDA guidance. Emergency IND is the common route that patients are receiving convalescent plasma.
Search Tips
To search this directory, simply type a drug name, condition, company name, location, or other term of your choice into the search bar and click SEARCH. For broadest results, type the terms without quotation marks; to narrow your search to an exact match, put your terms in quotation marks (e.g., “acute respiratory distress syndrome” or “ARDS”). You may opt to further streamline your search by using the Status of the study and Intervention Type options. Simply click one or more of those boxes to refine your search.
Displaying 4220 of 4490University Hospital, Basel, Switzerland
The purpose of this study is to evaluate whether Canakinumab has beneficial effects on patients with Type 2 diabetes mellitus and coronavirus disease 19 (COVID19).
Tanta University
The global escalation of COVID19 pandemic has put the health care system under pressure with urgent need for treatment. In the absence of vaccine and approved drug against SARS-COV2 over the past 6 months, the health authorities were obliged to re-purpose existing drugs to fight this pandemic.
ARCTEC
Dogs are some of nature's greatest detectives, owing to their incredible sense of smell and ability to be trained. Most of us will be familiar with seeing trained sniffer dogs at airports looking for drugs and other prohibited items, but their skills don't stop there. The use of medical detection dogs is becoming increasingly common, as they are able to identify cancers, changes in blood sugar levels and even predict seizures. These are just a few examples of dogs playing a key role in public health. Many diseases can alter the way humans smell. A study undertaken by the London School of Hygiene & Tropical Medicine (LSHTM) and Durham University has shown that dogs are able to accurately diagnose malaria. The investigators know that respiratory illnesses can alter your body odours, and thus the investigators plan to determine whether dogs are able to identify the novel coronavirus known as COVID-19 (or SARS-CoV-2). COVID-19 can present itself asymptomatically (i.e. causing no apparent symptoms), which could lead to the spread of infection in the population. The investigators believe that dogs may be able to identify asymptomatic patients, as well as those who have mild symptoms (symptoms not requiring treatment, hospital stay or limiting normal activities). It is thought that a single medical detection dog stationed within an airport would be able to screen up to 750 people for COVID-19 infection in just 1 hour, informing those who are infected to isolate, preventing further spread of the disease. In order to determine whether it is possible for dogs to accurately diagnose COVID-19, the investigators must first collect samples. NHS staff and members of their households that are eligible for SARS-CoV-2 screening, have been selected to participate in this study due to their potential exposure to this disease agent. In addition, participants from the general population who are displaying mild COVID-19 symptoms or have been exposed to COVID-19 will be recruited via hospitals, testing centers, outbreak testing programs and home testing programs. Initially, participants will attend their screening test as planned or confirm that they have had a swab test within the previous 24 hours. Immediately following this, the investigators will ask participants to collect samples of breath odour and body odour, which will be collected passively through the wearing of face masks, shirts, and nylon socks. The investigators will ask to be provided with the results of the SARS-CoV-2 screening swab, which will allow for us to determine whether participants are positive or negative for SARS-CoV-2. These odour samples will be grouped by positive or negative test results, and transported to LSHTM where these will be processed in order to prevent contact with the virus, negating the risk for dogs and their handlers. A pilot study will be undertaken to confirm whether dogs are able to distinguish between positive and negative samples using traditional sniffer dog training methods. If this is possible, the investigators will proceed to the main study to determine the accuracy (known as sensitivity and specificity) of the dogs' ability to identify the virus. Both the handler and the dogs themselves will be 'blinded' to the samples, and thus unaware of which sample is which. When the data generated by these tests is entered, it will be confirmed whether or not the samples have been correctly identified. The dogs will be trained to detect and report the detection of the volatile odours characteristic of COVID-19 infection. For quality control purposes the investigators also aim to characterise the COVID-19 odour profile by analysing samples with a special process called GC (gas chromatography) and/or GC-MS (gas chromatography coupled mass spectrometry). This will help to inform the identification of compounds showing differences between infected and non-infected samples. The investigators believe that this work could be useful in the fight against COVID-19.
University of Florida
COVID-19 outcomes are worse in male patients. Androgen signaling, therefore, is a target for clinical exploration. TMPRSS2 is a membrane protease required for COVID pathogenesis that is regulated by androgens. Blocking TMPRSS2 with bicalutamide may reduce viral replication and improve the clinical outcome. Therefore, the study proposes to test bicalutamide at 150 mg oral daily dosing in a double-blind placebo-controlled randomized trial in male patients with early symptomatic COVID-19 disease.
Hacettepe University
The current study is aimed to determine the procedures applied in the dysphagia clinics during the COVID-19 pandemic period. A questionnaire consisting of 30 questions will be implemented. Each participant will be asked to answer the questions.
Scandinavian Critical Care Trials Group
We aim to assess the benefits and harms of higher (12 mg) vs lower doses (6 mg) of dexamethasone on patient-centered outcomes in patients with COVID-19 and severe hypoxia.
University of California, Los Angeles
This is an open-label unblinded, randomized study to treat hospitalized covid-19 patients with colchicine plus current care (per institution treating physicians) vs. current care per institution treating physicians alone (the control arm)
3M
Title: Phase I/II Trial (Safety and Dosing) of Povidone-iodine (PVP-I) Nasal Swab For Preventing COVID-19 Spread in Healthy Subjects: Summary: This study will evaluate in a PH I/II trial in healthy volunteers the safety and tolerability of PVP-I nasal swabs daily application. The intent is to follow with a PH III randomized controlled clinical trial to assess the capacity for PVP-I nasal swabs to mitigate the transmission of respiratory viruses specifically COVID 19.
FAI²R (Auto-immune and auto-inflammatory rare diseases French network)
this observational, cross-sectional, national, comparative study, including RMD patients followed in hospital centres of the FAI²R Rare Diseases Healthcare Pathway network and specialist private practitioners caring for patients suffering from inflammatory rheumatism, systemic autoimmune diseases and auto-inflammatory diseases. The objective of the study is to compare RMD patients with COVID 19 infection (cases) to RMD patients who have not had COVID 19 infection (controls) on their mental health.
National Polytechnic Institute, Mexico
Rationale: The renin-angiotensin-aldosterone system (RAAS) dysregulation may play a central role in the pathophysiology of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection associated acute lung injury (ALI) / acute respiratory distress syndrome (ARDS). In the RAAS, Angiotensin I (Ang I) is converted to angiotensin II (Ang II) by angiotensin converting enzyme (ACE). Ang II mediates vasoconstrictive, pro-inflammatory and pro-oxidative effects through agonism at Ang II type 1 receptor (AT1R). ACE2 converts Ang II to angiotensin 1-7 (Ang1-7), which finally binds to Mas receptor (MasR) and mediates many beneficial actions, including vasodilation and anti-inflammatory, anti-oxidant and antiapoptotic effects. ACE2, a homologue of ACE, is an integral cell membrane protein with a catalytic domain on the extracellular surface exposed to vasoactive peptides. SARS-CoV-2 penetrates the cell through ACE2, and the increase of this receptor (due to the use of ACE inhibitors or angiotensin receptor blockers [ARBs]) may facilitate SARS-CoV-2 infection, which might increase the risk of developing severe and fatal SARS-CoV-2 infection. However, through upregulation of ACE2, ACE inhibitors/ARBs can exert anti-inflammatory and antioxidative effects, which may be beneficial in preventing ALI and ARDS. Objective: To evaluate the effectiveness and safety of telmisartan in respiratory failure due to COVID-19. Study design: This is an open label, phase 2 clinical trial. Study population: Adult hospitalized SARS-CoV-2-infected patients (n=60). Intervention: The active-treatment arm will receive telmisartan 40 mg daily and the control arm will receive standard care. Treatment duration will be 14 days or up to hospital discharge