The current Sars-CoV-2 (COVID-19) pandemic has created major changes in how physicians perform routine healthcare for our patients, including elective and non-elective surgical procedures. Beginning on March 16th, 2020 Northwell Health postponed all elective surgeries. As the incidence of COVID-19 cases begins to decrease and hospital volume improves we need to ensure the safety of our patients planning surgical procedures. However, at this time there is a scarcity of data regarding the COVID-19 test conversion rate in surgical patients. Our goal is to determine the COVID-19 test conversion rate in these patients to better guide strategies for restarting surgical care in a large-scale pandemic. Patients will be routinely tested with serology and PCR for COVID-19 24-48 hours prior to their scheduled surgery. Those who provide informed consent will be re-tested 12-16 days after discharge from the hospital to determine any potential nosocomial infection rate. Patients will also answer a few questions during their retest to allow the study team to gauge exposure risk postoperatively after leaving the hospital.
The rapid spread of the COVID-19 infection has led to a near global lockdown including a
pause in all elective surgeries [1-6]. Multiple healthcare systems and surgical societies
recommended ceasing all elective procedures until this crisis is contained [7-10]. As such,
it will be necessary for hospitals to restructure as surgeries increase to protect surgical
patients from becoming infected. Our study will be the first to define the test conversion
rate of those undergoing surgical procedures during the COVID-19 pandemic. The information
gathered from this study can have implications in how surgical centers treat patients during
and after this pandemic.
There has been a single study examining postoperative nosocomial infections during the
initial incubation period in which 100% of patients developed Sars-CoV-2 viral pneumonia, 14
(44%) required ICU admission with mechanical ventilation, and 7 (20.5%) died after ICU
admission [11]. A second cohort of bariatric surgery patients found that 4 of 4 (100%)
developed Sars-CoV-2 infections postoperatively with all patients surviving [12]. Another
retrospective study found that of 305 patients admitted to the digestive surgery service, 15
(4.9%) developed nosocomial Sars-CoV-2 pneumonia [13]. Of this cohort, two patients died, and
seven were hospitalized with six discharged at the time of chart review. Another
retrospective non-operative hospital cohort found that 34 of 102 adult patients contracted
Sars-CoV-2 as a nosocomial infection. In a review of Gynecologic Oncology procedures in Wuhan
the overall nosocomial infection rate was 1.59% (3/189) with two of the three patients being
discharged by the publication date [14]. However, in a retrospective review of a general
hospital ward in Hong Kong in which the staff used 'vigilant basic infection control
measures' 10 patients and 7 staff members that met the definition for close contact were
identified and through contact tracing 76 tests were performed on 52 contacts with no
Sars-CoV-2 infections identified [15]. Another cohort from Wuhan demonstrated that when
performing regional anesthesia (45/49 for Cesarean Section), no anesthetists were infected
when complying with level 3 PPE [16].
1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel
coronavirus in Wuhan, China. Lancet 2020;395:497-506.
2. Guan, Wei-jie, et al. "Clinical characteristics of coronavirus disease 2019 in China."
New England journal of medicine (2020).
3. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and
international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling
study. Lancet 2020 January 31 (Epub ahead of print).
4. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel
coronavirus-infected pneumonia. N Engl J Med. DOI: 10.1056/NEJMoa2001316.
5. Hanna, T.P., Evans, G.A. and Booth, C.M., 2020. Cancer, COVID-19 and the precautionary
principle: prioritizing treatment during a global pandemic. Nature Reviews Clinical
Oncology, 17(5), pp.268-270.
6. Brindle, M. and Gawande, A., 2020. Managing COVID-19 in surgical systems. Annals of
Surgery.
7. American College of Surgeons (2020). COVID-19: Recommendations for Management of
Elective Surgical Procedures. Retrieved March 13, 2020 from
https://www.facs.org/covid-19/clinical-guidance/elective-surgery
8. SAGES (2020). SAGES AND EAES RECOMMENDATIONS REGARDING SURGICAL RESPONSE TO COVID-19
CRISIS. Retrieved March 29, 2020 from
https://www.sages.org/recommendations-surgical-response-covid-19/
9. American Society of Plastic Surgeons (2020). APS Guidance Regarding Elective and
Non-Essential Patient Care. Retrieved March 19th , 2020 from
https://www.plasticsurgery.org/for-medical-professionals/covid19-member…
us-statements
10. American College of Obstetrics and Gynecology (2020). Joint Statement: Scheduling
Elective Surgeries. Retrieved March 16th, 2020 from
https://www.sgo.org/clinical-practice/management/scheduling-elective-su…
11. S. Lei, F. Jiang, W. Su, et al.Clinical characteristics and outcomes of patients
undergoing surgeries during the incubation period of COVID-19 infection.
EClinicalMedicine (2020), p. 100331
12. Aminian A, Kermansaravi M, Azizi S, et al. Bariatric Surgical Practice During the
Initial Phase of COVID-19 Outbreak [published online ahead of print, 2020 Apr 20]. Obes
Surg. 2020;1-4. doi:10.1007/s11695-020-04617-x
13. Luong-Nguyen M, Hermand H, Abdalla S, et al. Nosocomial infection with SARS-CoV-2 within
Deparments of Digestive Surgery. [published ahead of print, 2020 Apr 27] J of Vis Surg.
2020.
14. Yang S, Zhang Y, Cai J, Wang Z. Clinical Characteristics of COVID-19 After Gynecologic
Oncology Surgery in Three Women: A Retrospective Review of Medical Records [published
online ahead of print, 2020 Apr 7]. Oncologist. 2020;10.1634/theoncologist.2020-0157.
doi:10.1634/theoncologist.2020-0157
15. Wong SC, Kwong RT, Wu TC, et al. Risk of nosocomial transmission of coronavirus disease
2019: an experience in a general ward setting in Hong Kong [published online ahead of
print, 2020 Apr 4]. J Hosp Infect. 2020; doi:10.1016/j.jhin.2020.03.036
16. Zhong Q, Liu YY, Luo Q, et al. Spinal anaesthesia for patients with coronavirus disease
2019 and possible transmission rates in anaesthetists: retrospective, single-centre,
observational cohort study [published online ahead of print, 2020 Mar 28]. Br J Anaesth.
2020;S0007-0912(20)30161-6. doi:10.1016/j.bja.2020.03.007
Diagnostic Test: COVID-19 PCR and Serology
PCR for COVID entails obtaining a nasopharyngeal swab (a cotton tip introduced via the nose to obtain a sample) to determine whether there is active viral replication and viral shedding. They will then have a second test with serology and PCR for COVID-19 infection 12-16 days after discharge from the hospital. Serology implies that a blood sample will be obtained by venipuncture. A volume of 50 ml (about 4 tablespoons) or less of blood will be obtained.
Inclusion Criteria:
1. Patients of any ethnic background undergoing an elective surgical procedure with a
minimum of 24-hour hospital admission.
2. Age ≥18.
3. Written Voluntary Informed Consent.
Exclusion Criteria:
1. Patients age < 18 years.
2. Prior documented COVID-19 Infection.
3. Current hospital inpatient prior to procedure.
4. Person Under Investigation for COVID-19 infection.
5. Current use of antiviral medications.
6. Severe or uncontrolled, concurrent medical disease (e.g. uncontrolled diabetes,
unstable angina, myocardial infarction within 6 months, congestive heart failure,
etc.) .
7. Documented immunodeficiency.
8. Patients with dementia or altered mental status that would prohibit the giving and
understanding of informed consent at the time of study entry.
9. Outpatient procedures with planned same-day discharge.
North Shore University Hospital
Manhasset, New York, United States
Long Island Jewish Medical Center
New Hyde Park, New York, United States